T.etrahedron Letters No.41, PP. 3689-3695, 1965. **Pergaman Press Ltd. Printed in Great Britain.**

EPIMERIZATION OF (\pm) **-4', 5, 7-TRIMETHOXYFLAVAN-4** β **-OL** TO THE -4 α -OL WITH ACETIC ANHYDRIDE AND PYRIDINE.

H.G. Krishnamurty and T.R. Seshadri, Department of Chemistry, University of Delhi, Delhi, India,

and

D.G. Roux, Leather Industries Research Institute. Rhodes University, Grahamstown, South Afrjca.

(Received 19 Angnat 1965)

Attempted acetylation of (+)-4',5,7-trimethoxyflavan- 4β -ol (I), m.p. 159⁰, with acetic anhydride and pyridine a. room temperature for 48 hr. gave a product (II), m.p. 117⁰, which was considered to be isomeric with I from comparison of their ultra-violet and infra-red spectra^l. General similarity of their nuclear-magnetic-resonance spectra led to the tentative conclusion that the product was $(\frac{+}{n})-4$, 5,7trimethoxyflavan-4 α -ol (II)¹. Present re-examination of the **n.m.r. spectra of both compounds usiing a Varian HA-100 spectrometer has provided the necessary resolution of absorption lines due to protons at C-2 and C-4 (unresolved at 60M0), and detailed analysis of their spectra (Table 1) now affords unequivocal proof of the above configurations, and of the unique epimerization.**

3689

N.m.r. spectra of (\pm) -4', 5,7-trimethoxyflavan-4 α -and-4 β -01 * ŀ, \mathcal{L} ś \mathbf{r}

 $*_{\text{In}~\text{deuterochloroform}}$ with tetramethylsilane as internal standard at 100 Mc. ⁺The intensities of the resonance lines are in parenthesis.

3690

 $\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array}$

l,

J $\ddot{}$

 $\ddot{}$

ţ

 $\frac{1}{2}$ $\hat{\mathbf{r}}$ \bar{t} $\frac{1}{2}$

> $\ddot{\ddot{\ }}$ \ddot{i}

> > ĵ

The heterocyclic ring protons at C-2 and C-4 of I and II are in each instance coupled with the vicinal methylene protons at C-3 and considered independently, each forms the X portion of an ABX system. Assuming that J_{2, 2a} has the same **2,3a** relative sign as $J_{2,3b}$, and $J_{3a,4}$ as $J_{3b,4}$ (cf.^{2,3)}, then for the flavan-4 \boldsymbol{A} -ol (1) $J_{2,3a} + J_{2,3b} = 13.4$ and $J_{3a,4} + J_{3b,4}$ **B 2** = 16.7 c.p.s., and for the flavan-4 \mathbf{Q} -ol (II) $\mathbf{J}_{2,3a}$ + $\mathbf{J}_{2,3b}$ = 14.4 and $J_{3a,4} + J_{3b,4} = 6.0$ c.p.s. These values show that the 2- and 4- protons are both $axial$ in the flavan- 4β -ol, whereas for the flavan- $4\frac{d}{ }$ -01 they are likely to be $\frac{axial}{ }$ and **equatorial** respectively^{4,5}. Comparison with other **flavan-4** β -01 acetates³, $(J_{2,3a} + J_{2,3b}) = 12.8 - 13.1$ and $\mathbf{J}_{3a,4}$ + $\mathbf{J}_{3b,4}$ = 14.8 - 16.5 c.p.s.) and benzoate⁹⁹ ($\mathbf{J}_{2,3a}$ +

^{*} Only 25 configurations are illustrated in these formulae.

 $J_{2,3b} = 13.7$ and $J_{3a,4} + J_{3b,4} = 16.2$ c.p.s.), and with a **flavan-4** $\underline{\alpha}$ -o1⁹ ($J_{2,3a}$ + $J_{2,3b}$ = 14.3 and $J_{3a,4}$ + $J_{3b,4}$ = 5.8 c.p.s.), its acetate² (J_{2,3a} + J₂,3b = 14.3 and J_{3a,4} + ${\bf J}_{3b,4}$ = 6.0 c.p.s.) and a benzoate^{-y*} (${\bf J}_{2,3a}$ + ${\bf J}_{2,3b}$ = 14.9 and $J_{3a,4} + J_{3b,4} = 6.0$ c.p.s.) confirm their 2,4-cis (I) $2(\underline{eq}):4(\underline{eq})$ arrangement of substituents and $2,4-\underline{trans}$ (II) $2(\underline{eq}): 4(\underline{ax})$ configurations respectively.

The protons at C-2 and C-4 appear as quartets at 100 Mc, **an exception being the triplet of the C-4 proton of I which** has small secondary splitting $(J < 1 c.p.s.)$. The methylene **resonance of the flavan-4** β **-ol (I) shows an anticipated 16** absorption lines (vicinal plus geninal coupling) reduced to 14 in the flavan-40 x -ol (II) due presumably to overlap **resulting from narrower spin-spin splittings.**

Considering the benzenoid protons, the $4(\underline{eq})$ - or $4(\underline{ax})$ **orientation of the free hydroxyl affects the chemical shift** of the A-ring protons, the singlet due to $6-H + 8-H$ in the flavan-4**/2-**ol (I) being converted into a typical <u>me</u> **/rl** $\texttt{coupled AB quartet}$ (J $_{6,\,8}^{\vphantom{1}}$ = 2.5 c.p.s.) in the flavan-4 γ -(II), **in which the doublet due to the 6-proton is presumed to be downfield. The 4'-methoxyl group in the B-ring gives rise to an** A_2B_2 **system** $(J_2, 3, 1, 3, 1, 4, 5, 6, 2, 9, 0, 0, 0, 0, 0, 0, 0)$ which **is typical of a 1,4-disubstituted benzenoid ring,**

The lack of reactivity of the 4-hydroxyl of both I and II with acetic anhydride-pyridine, as opposed to its ready acetylation 6,739 and benzoylation8in unsubstituted and in 6 -methyl and 7 -methoxyl flavan-4 γ - and -4β -ols, indicates **that steric repulsion due to the 5-mcthoxyl is responsible,**

as suggested¹. By comparison, flavan-3,4-diols with 5-methoxyl substitution undergo ready acetylation with acetic anhydridepyridine^{10,11,12}, showing that other factors control the course of their acetylation.

The relative ease of epimerization of I indicates that electron-release from the 7-methoxyl is possible, thus enabling inversion according to the mechanism outlined by Drewes and Roux¹³ for flavan-3,4-diols ($\underline{cf.}$ scheme). The presence of the 5-methoxyl reinforces this effect. This

explanation finds a parallel in the observation 14 , from comparative studies^{14,15,16,17}, that inversion of $4(gq)$ -hydroxyls of **flavan-3,4-diols during the course of formation of isopropylidene derivatives is facilitated by methoxyl groups in the 5- and** 7- **positions.**

One of us (D.G.R.) acknowledges joint support from the South African Council of Scientific and Industrial Research and the African.Territories Wattle Industry Fund. The spectra **were recorded by Mr. P.L. Wessels, Chemicai Physics Group, South African Council of Scientific and Industrial Research, Pretoria.**

REFERENCES

- **1. H.G. Krishnamurty, K.G. Sarma and T.R. Seshadri, Current** Sci. (India), 32, 453 (1963).
- 2. R.C. Lauterbur and R.J. Kurland, J. Amer. chem. Soc., 84, **1 (1962).**
- **3.** M. Karplus, <u>J</u>. <u>Amer. chem</u>. <u>Soc</u>., <u>84</u>, 2458 (1962).
- 4. M. Karplus, J. chem. Phys., 30, 11 (1959).
- **5.** M. Karplus, <u>J. Amer. chem</u>. Soc., <u>85</u>, 2870 (1963).
- **6. C.P. Lillya, S.E. Drewes and D.G. Roux, <u>Chem</u>. & <u>Ind</u>., 783 (1963).**
- 7. S.E. Drewes and D.G. Roux, <u>Biochem</u>. <u>J</u>., <u>92</u>, 559 (1964).
- **a. C.P. Lillya, D. Kehoe, E.M. Philbin, M.A. Vickers and T. Wheeler, Chem. & Ind., 84 (1963).**
- **9. B.L.. Verma and M.M. Bokadia, M.M. Current Sci. (India), <u>11</u></u>, 648 (1964).**
- **10. A.K.. Ganguly, T.R. Seshadri and P. Subramanian, Tetrahedron, 3, 225 (1958).**
- **11. A.K.. Ganguly and T.R. Seshadri, Tetrahedron, g, 21 (1959).**
- 12. A.K. Ganguly and T.R. Seshadri, <u>J</u>. <u>chem</u>. <u>Soc</u>., 2787 (1961).
- **13. S.E. Drewes and D.G. Roux, Chemical Communications,** 282 **(1965)**
- **14. S. Fujise, T. Munekata, E. Ishikawa, T. Kobayashi,** I. Sakai, M. Veno, T. Yuki and S. Hishida, J. chem. Soc. Japan, 84, 81 (1963).
- 15. S. Fujise, Y. Fujise and S. Hishida, J. chem. Soc. Japan, **& 78 (1963).**
- 16. S. Fujise, T. Onuma and S. Hishida, J. chem. Soc. Japan, **&, 1298 (1962).**
- 17. S. Fujise, K. Adachi and S. Hishida, J. chem. Soc. Japan, **&, 1294 (1962).**